Mathematics 280, Section 11.3,11.4
Integral Test
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Theorem:  Let 
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be a series with positive terms and let 
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 be the function you get when n is replaced by 
x.  If  f  is decreasing and continuous for 
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, then             and                     both converge or both diverge.
Exercises: Verify the following are decreasing and then apply the integral test to find which converge.
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Remainder Estimate: Suppose 
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, where f is a continuous, positive, and decreasing function for 
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 is convergent to S.  If 
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Exercise: a) Find an estimate for the remainder term for 
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. Verify your estimate by finding the actual remainder. b) How far out in the series must you go to get the error to be less than 
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Comparison Tests for Positive-Term Series
   Direct Comparison Test: 
      Suppose that 
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are positive term series and 
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 for all n.  Then

                         If 
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 converges, then  
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 converges. (ceiling)

                         If 
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 diverges, then  
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 diverges. (floor)
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Exercises: Determine whether the following converge or diverge by applying the Direct Comparison Test.
1. 
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   Limit Comparison Test: 
  Suppose that 
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are positive term series. If the limit 
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, then either both series converge or both diverge. 
  Normal process: Given 
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, find 
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that is directly related to 
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 and whose convergence is known.
Exercises: Apply the Limit Comparison Test to the following to determine if they converge or diverge.  

1. 
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  Alternating Series Test:       
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Exercises: Apply the Alternating Series test to the following to determine if they converge or diverge.
1. 
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Suppose � EMBED Equation.3  ���is a positive term series.  If I suspect � EMBED Equation.3  ���converges, I will try to find 





another series � EMBED Equation.3  ���that 








Then � EMBED Equation.3  ���must also converge.  We normally use this for geometric series or p – series.


So here, � EMBED Equation.DSMT4  ��� is acting like the “ceiling”, not allowing me to diverge.





has positive terms,  


converges, and 


satisfies� EMBED Equation.3  ���, for all � EMBED Equation.3  ��� past some point.    








Suppose � EMBED Equation.3  ���is a positive term series.  If I suspect � EMBED Equation.3  ���diverges, I will try to find 





another series � EMBED Equation.3  ���that 








Then � EMBED Equation.3  ���must also diverge.  We normally use this for geometric series or p – series.


So here, � EMBED Equation.DSMT4  ��� is acting like the “floor”, pushing me up towards infinity.








has positive terms,  


diverges, and 


satisfies � EMBED Equation.3  ���, for all � EMBED Equation.3  ��� past some point.








1. � EMBED Equation.DSMT4  ���for all n (non-increasing) and 


2. � EMBED Equation.3  ���
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